Kaguya Lunar Multiband Imager MI Derived FeO Weight Percent 50N50S 512ppd 59mpp
- Originators
- USGS Astrogeology Science Center, Lemelin et al., University of Hawaii, JAXA - SELENE MI Instrument Team (M. Ohtake, PI)
- Publisher
- USGS Astrogeology Science Center
- Publication Date
- 2016-09-01
- Abstract
- This mosaic represents the abundance of iron (Fe) on the surface of the Moon, expressed as weight percent of iron oxide (FeO wt%). The mosaic was created from topographically-corrected MI reflectance data acquired by the JAXA SELENE/Kaguya mission (see Ohtake et al., 2013) from the Kaguya Archive MI MAP processing level version 2 (MI MAP_02) products. The MI collects images of the lunar surface at 5 wavelengths in the ultraviolet-visible (UVVIS; 415, 750, 900, 950, 1001 nm) region of the electromagnetic spectrum and at 4 wavelengths in the near-infrared region (NIR; 1000, 1050, 1100, 1250 nm). These multispectral images have been used to derive 9 new near-global maps of the four common lunar minerals, FeO, optical maturity (OMAT), the abundance of SMFe, the grain size for plagioclase, and an estimation of the modeling error using Hapkeâs radiative transfer equations (Lemelin et al., 2015; 2016; 2019). These products only cover the latitudinal range +/-50 degrees due to the difficulty of applying adequate corrections for topographic shading at higher latitudes. Preparation details and information on limitations of these products will be presented in a future publication. The mosaic presented here has been resampled to 512 ppd (59 meters/pixel) from its original resolution of 2048 ppd (15 meters/pixel). Retrieve the graphical 8bit-stretched full-res GeoTiff and legend from the Ancillary Products section at the right-side of this page. For usage rights, please refer to the JAXA Conditions for material usage page ( http://jda.jaxa.jp/en/service.php ) and please credit JAXA and the SELENE/Kaguya data. ©JAXA/SELENE References: Lemelin, M., P. G. Lucey, K. MiljkoviÄ, L. R. Gaddis, T. M. Hare, and M. Ohtake (2019), The compositions of the lunar crust and upper mantle: Spectral analysis of the inner rings of lunar impact basins, Planetary and Space Science, 165, 230-243. Lemelin, M., P. G. Lucey, L.R. Gaddis, T. Hare, and M. Ohtake (2016), Global map products from the Kaguya Multiband Imager at 512 ppd: Minerals, FeO and OMAT, 47th LPSC, abs. #2994. http://www.hou.usra.edu/meetings/lpsc2016/pdf/2994.pdf Lemelin, M., P. G. Lucey, E. Song, and G. J. Taylor (2015), Lunar central peak mineralogy and iron content using the Kaguya Multiband Imager: Reassessment of the compositional structure of the lunar crust, J. Geophys. Res. Planets, 120, 869â887. doi:10.1002/2014JE004778. Ohtake, M., C.M. Pieters, P. Isaacson, S. Besse, Y. Yokota, T. Matsunaga, J. Boardman, S. Yamamoto, J. Haruyama, M. Staid, U. Mall, R.O. Green (2013), One Moon, Many Measurements 3: Spectral reflectance, Icarus, Volume 226, Issue 1, 364â374. Ohtake, M., J. Haruyama, T. Matsunaga, Y. Yokota, T. Morota, C. Honda and the LISM team (2008), Performance and scientific objectives of the SELENE (KAGUYA) Multiband Imager, Earth Planets Space, 60, 257-264. Taylor, L. A., C. Pieters, A. Patchen, D. S. Taylor, R. V. Morris, L. P. Keller, and D. S. McKay (2010), Mineralogical and chemical characterization of lunar highland soils: Insights into the space weathering of soils on airless bodies, J. Geophys. Res., 115, E02002, doi:10.1029/2009JE003427.
- Purpose
- The SELENE (KAGUYA) mission addressed the origin and evolution of the Moon by obtaining global element and mineral compositions, topological structure, gravity field and electromagnetic and particle environment of the Moon. The MI was a high-resolution multiband imaging camera with a spatial resolution in visible bands of 20 mpp and a spatial resolution in near-infrared bands of 62 mpp from the 100 km SELENE (KAGUYA) orbit altitude. These data support the derivation of many new products, including mineral and elemental abundance maps such as those presented here.
Contact and Distribution
- Format
- Mineral Map, Raster Data, Remote-sensing Data
- Access Scope
- Astrogeology
- Supplemental Information
- http://jda.jaxa.jp/en/service.php, http://l2db.selene.darts.isas.jaxa.jp/index.html.en, http://www.hou.usra.edu/meetings/lpsc2016/pdf/2994.pdf
- Native Data Set Environment
- ISIS v3
- Astrogeology Theme
- Mineral resources, Remote Sensing, Selenography
- Mission Names
- Kaguya
- Instrument Names
- MI
- Online Package Link
- https://astrogeology.usgs.gov/search/map/kaguya_lunar_multiband_imager_mi_derived_feo_weight_percent_50n50s_512ppd_59mpp
- External File Size
- 39 GB
- Online File Link
- https://planetarymaps.usgs.gov/mosaic/Lunar_MI_mineral_maps/Lunar_Kaguya_MIMap_MineralDeconv_FeOWeightPercent_50N50S.tif
- Contact Address
- 2255 N. Gemini Drive
- Contact City
- Flagstaff
- Contact State
- AZ
- Contact Postal Code
- 86001
- Contact Email
- astroweb@usgs.gov
- Logical Consistency
- The MI reflectance data were provided by the SELENE team; information about the MAP processing level reflectance can be found in KAGUYA (SELENE) Product Format Description â Lunar Imager/Spectrometer (LISM (TC/MI/SP)) / SPICE Kernel, version 1.3 (2010). See Source Online Linkage below. The MI ultraviolet-visible (UVVIS) data (5 spectral bands, at 415, 750, 900, 950, 1001 nm) were used to derive 9 new near-global maps of common lunar minerals, FeO, TiO2, and optical maturity (OMAT) using Hapkeâs radiative transfer equations (Lemelin et al., 2016).
- Completeness Report
- The MAP level reflectance data product has been derived from 50N to 50S latitude of the Moon. There are data gaps within the mosaic set to NoData.
- Process Description
- KAGUYA (SELENE) Product Format Description â Lunar Imager/Spectrometer (LISM (TC/MI/SP)) / SPICE Kernel, version 1.3 (2010). See Source Online Linkage below. Original product at 2048ppd (15 m/p) data was sub-sampled to 512ppd (59 m/p).
Lineage
- Process Date
- 2015-08-01
- Source Online Linkage
- https://planetarymaps.usgs.gov/mosaic/Lunar MI_mineral_maps/
- Horizontal Positional Accuracy Report
- Best Effort
Geospatial Information
- Target
- Moon
- System
- Earth
- Minimum Latitude
- -50
- Maximum Latitude
- 50
- Minimum Longitude
- -180
- Maximum Longitude
- 180
- Direct Spatial Reference Method
- Raster
- Object Type
- Grid Cell
- Raster Row Count (lines)
- 51200
- Raster Column Count (samples)
- 184320
- Bit Type (8, 16, 32)
- 32
- Quad Name
- LQ-2, LQ-7, LQ-24, LQ-29
- Radius A
- 1737400
- Radius C
- 1737400
- Bands
- 1
- Pixel Resolution (meters/pixel)
- 59.225294
- Scale (pixels/degree)
- 512
- Map Projection Name
- Simple Cylindrical
- Latitude Type
- Planetocentric
- Longitude Direction
- Positive East
- Longitude Domain
- -180 to 180