Astrogeology Science Center

Mike Bland is a research space scientist at the USGS. His interest primarily lie in combining numerical models with planetary datasets to understand the thermal and tectonic evolution of ice-rich bodies. Past and current research areas include:

  • The mechanics of rifting in ice lithospheres (e.g., Ganymede and Enceladus)
  • The formation of contractional features on icy bodies (e.g., Europa, Enceladus, Titan)
  • Crater modification due to viscous relaxation (Enceladus and Ceres)
  • Mountain formation on Io
  • Differentiation of large icy satellites (Ganymede and Titan)
  • Production of Ganymede's magnetic field


  • University of Arizona, Tucson AZ
    • Ph.D. Planetary Science (2008)
  • Gustavus Adolphus College, St. Peter MN
    • BA Physics/Geology (2002)


  • First Decade Award, Gustavus Adolphus College (2012)
  • NASA Earth and Space Science Fellowship (2007)
  • Gerard P. Kuiper Award, University of Arizona (2007)


  • Dawn at Ceres Guest Investigator

First-Author Publications

  • Bland, M. T., McKinnon, W. B., 2017. Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede. Icarus, submitted.
  • Bland, M. T., Singer, K. N., McKinnon, W. B., Schenk, P. M., 2017. Viscous relaxation of Ganymede’s impact craters: Constraints on heat flux. Icarus 296, 275-288.
  • Bland, M. T., Raymond, C. A., Schenk, P.M., Fu, R.R., et al. 2016. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nat. Geo. 9, 538-542 doi:10.1038/NGEO2743.
  • Bland, M. T. & McKinnon, W. B. 2016. Deep faulting and mountain building on Io. Nat. Geo. 9, 429-432, doi:10.1038/NGEO2711.
  • Bland, M. T., McKinnon, W. B., and Schenk P. M. 2015. Constraining the heat flux between Enceladus’ tiger stripes: Numerical modeling of funiscualr plains formation. Icarus 260, 232-245, doi:10.1016/j.icarus.2015.07.016.
  • Bland, M. T. and McKinnon, W. B., 2015. Forming Ganymede's grooves at smaller strain: Toward a self-consistent local and global strain history for Ganymede. Icarus, 245, 247-262, 10.1016/j.icarus.2014.09.008.
  • Bland, M. T. 2013. Predicted crater morphologies on Ceres: Probing internal structure and evolution. Icarus, 226, 510-521.
  • Bland, M. T. and McKinnon, W. B., 2013. Does folding accommodate Europa’s contractional strain? The effect of surface temperature on fold formation in ice lithospheres. Geophys. Res. Lett., 40, 2534-2538, doi:10.1002/grl.50506.
  • Bland, M. T., and McKinnon, W. B., 2012. Forming Europa’s folds: Strain requirements for the production of large-amplitude deformation.  Icarus, 221, 694-709.
  • Bland, M. T., Singer, K. S., McKinnon, W. B., and Schenk, P. M. 2012. Enceladus’ extreme heat flux as revealed by its relaxed craters. Geo. Res. Lett., 39, L17204, doi:10.1029/2012GL052736.
  • Bland, M. T., McKinnon, W. B., and Showman, A. P., 2010. The effects of strain localization on the formation of Ganymede’s grooved terrain. Icarus, 210, 396-410.
  • Bland, M. T., Showman, A. P., and Tobie, G., 2009. The orbital-thermal evolution and global expansion of Ganymede. Icarus, 200, 207-221.
  • Bland, M. T., Showman, A. P., and Tobie, G., 2008. The production of Ganymede’s magnetic field. Icarus, 198, 384-399.
  • Bland, M. T., Beyer, R. A., and Showman, A. P., 2007. Unstable extensional of Enceladus’ lithosphere. Icarus, 192, 92-105.
  • Bland, M. T., and Showman, A. P., 2007. The formation of Ganymede's grooved terrain: Numerical modeling of extensional necking instabilities. Icarus, 189, 439-456.