

A Taste of ISIS:

Hands-on tutorial in using ISIS-3 to process

CASSINI ISS, RADAR, VIMS data

Tammy Becker, Jeff Anderson, Kris Becker, and Larry Soderblom USGS Astrogeology Team

NASA Planetary Data Workshop June 26, 2012

What is ISIS

- Integrated Software for Imagers and Spectrometers
 - Over 275 image processing applications
 - Strong emphasis on geometric knowledge
 - Photogrammetry / Camera models
 - Cartography / Map projections
 - Photometry
 - Improving instrument position & orientation / Bundle adjustment
 - Controlled digital mosaics
 - In use for over 30 years (PICS, ISIS2, ISIS3)
 - Support for over 35 NASA/ESA instruments
 - Support for Cassini ISS, RADAR, & VIMS data will be perpetuated into future of ISIS

Calibrated and converted to a map projection in ISIS 3

MISSION INSTRUMENTS SUPPORTED BY ISIS

- Lunar Orbiter III, IV, &, V
- Clementine UVIS, NIR, HIRES, & LWIR
- Lunar Reconnaissance Orbiter NAC & WAC
- Voyager 1 & 2
- Galileo SSI
- Cassini ISS, VIMS, & RADAR
- Mariner 10
- Messenger MDIS

- Viking Orbiter 1 & 2
- Mars Global Surveyor WAC & NAC
- Mars Odyssey THEMIS VIS & IR
- Mars Express HRSC
- Mars Reconnaissance Orbiter HiRISE, CTX, & MARCI
- Apollo Metric 15/16/17
- Dawn FC and VIR
- Future Plans (2012)
 - Apollo Panoramic 15/16/17
 - MRO CRISM, Mariner 9

ISIS S/W for Cassini ISS, RADAR, VIMS -

- background Funding from: Cassini Project, PDS imaging node, PGG Cartography
- Cassini Project funding has been focused on development of necessary ISIS S/W modules and SPICE interfaces
 - ISS specific modules include CISS2ISIS and CISSCAL (radiometry and camera models provided by collaboration with A. McEwen, U of AZ)
 - VIMS specific modules include VIMS2ISIS and VIMSCAL (radiometry and camera models provided by collaboration with R. Brown, U of AZ)
 - RADAR data sets are delivered in Level2 (correlated, geometrocally mapped) to PDS; ISIS S/W PDS2ISIS was upgraded to support RADAR
 - Modifications to SPICEINIT and camera models substantial Cassini effort
 - Numerous specialized scripts/procedures also developed for Cassini data

Most Recent ISIS Release

- ISIS 3.4.0 (Released 5/2012)
- UNIX based
 - Mac OS-X 10.5 & 10.6 (Intel)
 - Debian 6.0 (64 bit)
 - Fedora 16 (64 bit)
 - Redhat Enterprise 5.6 (32 & 64 bit)
 - Redhat Enterprise 6.1 (64 bit)
 - SUSE 11.3 (64 bit)
 - Ubuntu 10.04
- Download via Internet
 - Full distribution 130GB
 - Selective download
 - New! SPICE web access

http://isis.astrogeology.usgs.gov/documents/InstallGuide

HOW TO GET ISIS 3

- Start at the ISIS Website
 - http://isis.astrogeology.usgs.gov
 - See the 'Install Guide' for info on installing ISIS for your OS and platform
 - http://isis.astrogeology.usgs.gov/documents/InstallGuide
 - Create a separate 'ISIS3' directory, 'cd' into it and then copy the software and two data files there
 - Base data and mission-specific data are both required
 - Use 'rsync' to download the latest version of ISIS 3 software and data files
 - Example for MAC OSX 10.5 Intel (software):
 - % rsync -azv --delete isisdist.wr.usgs.gov::x86_darwin_OSX/isis .
 - Be sure to include the '.' at the end!!!
 - Example for Cassini (data), two files:
 - 1) % rsync -azv -delete isisdist.wr.usgs.gov::isis3data/data/base data/
 - 2) % rsync -azv -delete isisdist.wr.usgs.gov::isis3data/data/cassini data/
 - Set up environment variable & run startup script (examples for C shells)
 - % setenv ISISROOT /work1/isis3/isis
 - % source \$ISISROOT/scripts/isis3Startup.csh

ISIS DOCUMENTATION AND USER GUIDES

- General Information
 - isis.astrogeology.usgs.gov
- Online Workshops
 - isis.astrogeology.usgs.gov/lsisWorkshop
- Table of ISIS Applications
 - isis.astrogeology.usgs.gov/Application
- User Support Forums
 - isis.astrogeology.usgs.gov/lsisSupport
- Installation Guide
 - isis.astrogeology.usgs.gov/documents/InstallGuide

ISIS User Guides for ISS, RADAR, VIMS Now Online

- On October 20 USGS released an updated version of the ISIS-3 online self-guided "Workshop" that now includes User Guides, tutorials, and demonstrations for processing and analysis of Cassini ISS images, of RADAR datasets, and of VIMS spectral cubes---this new ISIS User Guide is online at: http://isis.astrogeology.usgs.gov/lsisWorkshop/index.php/lsisWorkshop
- This series of online user guides, tutorials and self-guided workshops will be continually updated and released on the same cycle as are new releases of ISIS 3 (~3 month) and will include new scripts and procedures as well as new S/W modules.

Today's ISIS-3 Tutorial-ISS, RADAR SAR & VIMS -Goals & Scope

- Provide an introduction to ISIS
 - 1. Find and download data sets using the PDS Planetary Atlas
 - 2. ISIS GUI and utility tools
 - 3. Automated processing methods (command line, pl scripts, awk)
 - 4. Importing & adding SPICE
 - 5. Radiometric calibration: ISS/VIMS
 - 6. Visualization tools for images & spectra (qview)
 - 7. Map projecting/mosaicking images
 - 8. How to control digital mosaics

Explore four sets of problems

- Intercompare ISS, RADAR, and VIMS data for Sinlap c. Ingest ISS/VIMS, spiceinit, calibrate, project to map; project RADAR SAR to same map
- 2. Build uncontrolled mosaic of ISS images of Enceladus south polar region; illustrate procedures to control mosaic; seam removal and photometric normalization
- Demonstrate scripts for assembly of VIMS
 1-line cubes into mosaics
- Use scripts on VIMS to generate averages in methane transmission windows; use fx to model VIMS Titan photometry

FOUR EXAMPLE PROBLEMS USING ISIS-3 WITH CASSINI DATA

(to be illustrated in today's hands-on tutorials)

Set 1: Download PDS-released data & convert to ISIS - RADAR (pds2isis), ISS (ciss2isis), VIMS (vims2isis)

Set 1: qview VIMS spectral extraction example: spectral averages of Level1 cube (radiometry calibrated, geometry raw)

Set 1: Calibrate/project/register/display (qview) RADAR (map2map), ISS & VIMS (cisscal, vimscal, spiceinit, cam2map)

Set 1: Enlargements of registered Sinlap cubes

A Control of the cont

ASTROGEOLOGY SCIENCE CENTER

Set 2: ISS mosaic of Enceladus' south pole: with/without control & photom

Images: N1602275390_1 N1604169204_2 N1597183216_2 N1597183061_2 N1597182896_2 N1597182735_2

Group = Mapping

ProjectionName = POLARSTEREOGRAPHIC

CenterLongitude = 0.0 TargetName = Enceladus

EquatorialRadius = 256600.0 <meters>
PolarRadius = 248300.0 <meters>
LatitudeType = Planetocentric

Longitude Direction = Positive East

LongitudeDomain = 360
MinimumLatitude = -90.0
MaximumLatitude = -10.0
MinimumLongitude = 0.0
MaximumLongitude = 360.0

UpperLeftCornerX = -374400.0

UpperLeftCornerY = 374400.0

PixelResolution = 200.0 <meters/pixel>

Scale = 21.929635596439 <pixels/degree>

CenterLatitude = -90.0

End_Group

Set 3: VIMS-specific ISIS procedures for analysis of single-line contiguous cubes (582 cubes concatenated)

Set 4: fx example: modeling photometry in a pair of VIMS cubes of Sinlap

